
Chapter 6

Considerations on the dynamics of maser
stars in our Galaxy.

A preliminary report on an ongoing study by
H.J. Habing, M. Messineo, G. van de Ven, M. Sevenster and K.H. Kuijken

6.1 Introduction

In this thesis we present results from a survey of SiO maser stars undertaken
for the explicit reason to investigate stellar kinematics and dynamics in the inner
regions of the Milky Way. This survey is a continuation of the thesis project of
M. Sevenster in which she looked at 1612 MHz (18cm) for OH/IR stars with the
VLA in the northern hemisphere and with the ATCA in the southern hemisphere
(Sevenster et al. 1997a,b, 2001). The results of Sevenster’s survey have been pre-
sented and analysed in several papers (Debattista et al. 2002; Sevenster et al. 1999;
Sevenster 1999a).

In discussing the velocities of the SiO maser stars we came across a question
that until now has not been studied in depth: can the line-of-sight velocities (vlos)1

of SiO and OH maser stars in the forbidden quadrants of the longitude-velocity,
(l − v), diagram be explained by a rotating bar, and if so, can they be used to
constrain the parameters of this bar? A full answer requires two consecutive
steps: a) to find a potential and orbits in this potential that will fill the required
areas of the (l − v) diagram; 2) to find a physical explanation why stars fill these
orbits. To answer this question we have started numerical calculations of the
orbits in a gravitational potential and compared the predicted longitudes and
line-of-sight velocities with those of the observations. Here we describe the first
preliminary results of this ongoing study.

1We will use the term ”line-of-sight velocity” instead of the more common term ”radial velocity” to
avoid confusion: in the kinematic and dynamical discussion ”radial velocity” will be used for the
motion along the radius vector from the Galactic Centre
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6.2 Available evidence for a Galactic bar

To date, there is clear evidence that the Galactic gravitational field has a weak
bar. This was first proposed by de Vaucouleurs (1964) based on the analysis of HI
gas velocities and it was later confirmed by, e.g., Binney et al. (1991) and Bissantz
et al. (2003). Other evidence comes from the asymmetry around l = 0◦ seen in
the COBE data (e.g. Binney et al. 1997; Blitz & Spergel 1991; Weiland et al. 1994),
star counts (Nakada et al. 1991; Whitelock & Catchpole 1992), and microlensing
studies (Paczynski et al. 1994).

Stellar maser emission provides a unique tool for studying stellar kinematics.
Unbiased samples of stellar line-of-sight velocities in the inner Galaxy are ob-
tained through stellar OH and SiO maser searches, and these are not affected
by interstellar extinction. In this small chapter we focus on the kinematics and
spatial distribution of maser stars, whose properties have been discussed in the
previous chapters or in the existing literature.

6.2.1 Asymmetry in the longitude distribution of maser stars

The data-set resulting from the OH/IR maser surveys by Sevenster et al. (1997a,b,
2001) uniformly covers the entire longitude range from −45◦ to +45◦. It can there-
fore be used very well to study a possible symmetry in star counts around l = 0◦.
By plotting l/|l| against |l| in a cumulative fashion, a deviation from (axial) sym-
metry in the inner Galaxy shows up as a non–horizontal section. In part of the
sample (−10◦ < l < 10◦) an asymmetry was found that could be explained most
naturally by a triaxial (m=2) component in the inner Galaxy, rather than a m=1
asymmetry (Sevenster 1999b). Here we present the same figure of the cumulative
distribution (Fig. 6.1), but for a larger sample of OH/IR stars. The distribution is
given for OH/IR stars as well as for MSX sources with AGB colours (as defined
in Sevenster 2002) in the same region (|b| < 3◦). For OH/IR stars, there is an over-
density at negative longitudes close to l = 0◦. At larger absolute longitudes, the
over-density is at positive longitudes; the slope of the curve is positive. Around
l = 40◦, the curve seems to level out, but this cannot be assessed in more detail as
the sample doesn’t go out far enough.

All these aspects are explained by a bar-like density distribution sampled out
to distances well beyond the centre of the Galaxy, up to the far end of the bar.
For the MSX sources, the initial negative slope is not seen and the curve starts to
rise at lower longitudes. This may be explained by the same bar-like distribution
sampled out to smaller distances (for a more detailed discussion see Sevenster
1999b).

Different models used to describe the density distribution of the bar lead to
different values of the semi-major axis (a) of the bar and the viewing angle (φ),
the angle between the line-of-sight and the major axis. However, they do not vary
independently, and possible models seem to range very roughly from φ = 20◦

and a = 3 kpc to φ = 50◦ and a = 2 kpc; this relation is not necessarily linear.
From measurements of the pattern speed (e.g. Debattista et al. 2002) we only have
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an upper limit for the semi–major axis of about 3 kpc, so it will probably be hard
to constrain the viewing angle as described here. However, if some parameters
or even the functional form of the bar density are known from other arguments,
this will limit the degrees of freedom considerably.

Figure 6.1: On the horizontal axis the absolute longitude, |l|, is displayed and on the
vertical axis the cumulative sum of l/|l|.

6.2.2 Longitude–velocity diagram

We will use three observational (l − v) diagrams. In the top panel of Fig. 6.2 the
CO line spectrum from Dame et al. (2001) is shown; the middle panel shows the
OH/IR stars observed by Sevenster and collaborators and the lower panel shows
the SiO masers studied in this thesis.

If a cloud is located at the tangent point to the line of sight of a circular orbit
around the Galactic centre (GC), its velocity vector will point entirely along the
line-of-sight; the velocity at the tangent point is the highest velocity seen along
a given line-of-sight. It will be called the terminal velocity, vterm. An analytic
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Figure 6.2: Longitude–velocity diagrams. In the upper panel the CO distribution from
Dame et al. (2001) is shown; the middle panel shows the sample of 766 OH/IR stars by
Sevenster et al. (1997a,b, 2001); the lower panel shows the distribution of the 271 SiO
masing stars from Chapter II plus another ∼ 90 unpublished SiO maser detections.

relation exists between terminal velocity and longitude: vterm = vlos(Rtang) −
V�sin(l). This is plotted in Fig. 6.3, as two continuous curves, adopting a constant
tangential velocity, V� of 220 km s−1, all the way to the GC. The terminal velocity
relation gives a good approximation to the highest velocity of the CO gas outside
longitudes of about ±20◦, confirming that the gas in the Galactic plane moves
largely in circular orbits around the GC. Most of the stars appear also constrained
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6.2 Available evidence for a Galactic bar

by the same curve. However, since stars have higher velocity dispersions than
the gas, some stars cross the edge defined by the gas terminal velocity by up to
60 km s−1.

There is a lower density gas region at positive velocities between longitudes 20◦

and almost 0◦ and similarly at negative velocities and longitudes between 0◦ and
−20◦. Gas simulations show that a barred potential explains the gas distribution
well, including the low–density regions (Athanassoula & Bureau 1999). Gas on
intersecting orbits will collide with itself and a steady flow is not possible. The gas
looses angular momentum and it will flow into smaller orbits at lower energies.
Holes seem to appear also in the stellar (l − v) diagram of the maser stars, but
they can not be explained in the same way.

In the region close to the GC, not only the holes in the gas (l − v) distribution,
but also the presence of stars at forbidden velocities in the two quadrants (l > 0
and vlos< 0) and (l < 0 and vlos> 0) show that the assumption of circular orbits
breaks down. In figure 6.3, where maser stars are over–plotted on the CO gas,
the curve −V� sin(l) is drawn. At positive (negative) longitudes the stars above
(below) this curve could move on circular prograde orbits. This apparently applies
to all maser stars in the longitude range 345◦ > l > 15◦. However, forbidden
velocities at longitudes |l| < 15◦ are a clear sign of non–circular orbits. Both
the OH and the SiO masers populate these regions within pretty much the same
boundaries.

6.2.3 Nuclear Disk

The distribution of gas in the inner one degree from the Galactic centre, the cir-
cumnuclear zone (CMZ) or nuclear ring, is well described by a disk with a radius
of about 200 pc radius (Combes 1991; Morris & Serabyn 1996). This disc appears
in the (l−v) diagram as a distinct feature: a strong correlation between longitude
and velocity, at longitudes −1.4 < l < 1.5◦, with maximum velocities of about 200
km s−1. Since the gas is a collisional medium, intersecting orbits are forbidden to
gas. Dynamical models in a barred potential predict 2 kinds of orbits: X1, along
the major axis of the bar, and X2 perpendicular to the X1. When the X1 start to
be self–intersecting the gas moves inward in to the lower energy X2 orbits. The
transition between the cusped X1 orbit and the X2 appear as a shock region where
atomic gas is possibly converted in molecular gas. In principle, stars can populate
the intersecting X1 orbits not accessible to gas clouds.

A strong correlation between longitude and velocity is seen also in the maser
stars. It was first seen in OH/IR stars within 1◦ from the GC (Lindqvist et al.
1992; Sjouwerman et al. 1998) and clearly appears in our SiO maser stars (Fig.
6.2). A linear regression fit using the OH/IR stars gives a slope of 180 km s−1 pc−1

(Lindqvist et al. 1992), consistent with that derived for SiO targets (Chapter V).
As seen in Chapter V, nuclear disk stars are highly obscured (AKS

> 2 mag).
The use of extinction estimates enabled us to exclude possible foreground objects
and to select individual stellar members of the nuclear disk. Furthermore, since
SiO targets are very bright at near–infrared wavelengths (Chapter III), they are
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Figure 6.3: This (l−v) diagram shows the maser stars on the CO map. Symbols are as in
Fig. 6.2. Continuous lines show the expected terminal velocities under the assumption of
circular orbits. The dashed line is the curve −V� sin(l), which corresponds to the opposite
of the velocity of the Sun along the line-of-sight. At positive (negative) longitudes the
stars on circular orbits above (below) this curve are moving prograde in the Galactic
standard of rest. The remaining regions are then the forbidden regions.

ideal for follow–up spectroscopic studies of the nuclear–disk population.

6.3 A simple dynamical model

In an axisymmetric potential, the angular momentum of each star, L = r2 ∂φ/∂t
is conserved and thus the stars will keep the same direction (i.e. ∂φ/∂t will not
change sign) when a star moves along its orbit. Clockwise moving stars (i.e. with
positive line-of-sight velocity) seen at a positive longitude will move away from
us (after correction for LSR motion). At negative longitudes these clockwise ro-
tating stars are all coming toward us (i.e. vlos< 0). In the (l − v)–diagram counter
rotating stars will appear only in the ”forbidden quadrants” (l > 0 and vlos< 0)
and (l < 0 and vlos> 0).

Kinematic deviations from what would be expected in an axisymmetric poten-
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tial were found by Sevenster et al. (2000), when modelling the underlying dis-
tribution function (DF). The observed line-of-sight dispersions for instance could
not be explained by an axisymmetric model with σR equal to σz . Moreover, to
explain the stars in the forbidden quadrants, isotropic components had to be in-
voked.

A barred potential explains the Galactic kinematics well. Several N–body dy-
namical models of the barred Milky Way exist (e.g. Fux 1997). They can be com-
pared with observations qualitatively, but do not allow a real fit to the data. The
latter is possible with the few dynamical models that are built by superposition
of either (analytical) DF components (Sevenster et al. 2000) or of numerically inte-
grated orbits (e.g. Häfner et al. 2000; Zhao 1996). The latter method is also known
as Schwarzschild’s method and is more general than the DF method, as it does
not require a priori assumptions about the form of the DF, which is even more
complicated by the fact that EJ is the only known integral of motion.

For the population of maser stars, no realistic dynamical model with a barred
potential has yet been constructed. Therefore we started to calculate orbits in
a barred potential with the ultimate goal to predict the observed distribution of
maser points in the (l − v) diagram. This is work under way, but the first results
are promising. In the following we briefly sketch the various assumptions and
steps made for our calculation and some first results.

6.3.1 Geometry

We adopt a Cartesian coordinate system (x, y, z), corotating with the bar–like
bulge at a (clockwise) angular speed of Ωb = 60 km s−1 kpc−1(Debattista et al.
2002). The origin of the coordinate system is at the Galactic centre, the x–axis
is aligned with the major axis of the bar–like bulge and the y–axis with its mi-
nor axis. The Sun is assumed to lie at a distance R� from the Galactic centre,
in the Galactic plane. The Sun-GC line makes an angle φ w.r.t. the long–axis of
the bulge. We fix the Sun’s distance to the Galactic centre at R� = 8 kpc and its
(clockwise) azimuthal velocity to V� = 200 km s−1. For a given mass model, this
leaves two free parameters: the angular speed Ωb of the bar-like bulge and the
angle φ of the Sun w.r.t. to long–axis of this bulge.

6.3.2 Equations of motion

We calculate numerically the orbits of stars in a frame of reference that is rotating
in the Galactic plane at an angular speed, ~Ωb = (0, 0,Ωb), solving the equation:

r̈ = −∇Φeff − 2 (Ωb × ṙ) . (6.1)

In the right–hand side of this equation the first term is the acceleration induced
by the effective gravitational potential; the second term is the Coriolis accelera-
tion. The Coriolis acceleration introduces a dependence of the acceleration in the
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x–direction on the velocity in the y–direction and vice versa. For further explana-
tions see Binney & Tremaine (1987).

6.3.3 Gravitational potential

As a first qualitative study of the stellar dynamics in our Milky Way we consider
the non–axisymmetric planar logarithmic potential (Binney & Tremaine 1987)

Φ(x, y) =
1

2
v2
0 ln

(

R2
C + x2 +

y2

q2

)

, (6.2)

with constant velocity v0, core radius RC and axial ratio q ≤ 1. Near the centre
(R ≡

√

x2 + y2 � RC) the logarithmic potential approximates that of a two-
dimensional harmonic oscillator, such that the corresponding central density is
nearly homogeneous. Going outwards the rotation curve rapidly flattens to vc ∼
v0. The constant axial ratio implies that the influence of the non–axisymmetry is
similar at all radii. Although at larger radii this is not realistic for our Galaxy, the
orbits calculated in this rotating potential are still representative as they become
nearly circular beyond the corotation radius.

6.3.4 First results

Taking the above logarithmic potential with v0 = 200 km s−1, RC = 0.14 kpc
and q = 0.9, we calculated a set of closed orbits by numerically solving Eq. (6.1)
with Ωb = 60 km s−1 kpc−1. We used a fifth order Runge-Kutta algorithm as
described in ”Numerical Recipes” (Press et al. 1992). A representative example of
these orbits in the XY -plane and in the (l − v) diagram, is shown in Fig. 6.4.

We have just started these simulations and we need to further compare our
model to observations in a quantitative way. However, as already proposed by
Binney et al. (1991) for the gas, it clearly appears from the simple superposition
of the orbits in the (l − v) diagram that orbits from the X1 and X2 families can
explain the observed forbidden stellar velocities.

6.4 Summary and future plans

In summary, the SiO and OH maser stars have a similar distribution in the velocity-
longitude diagram. Their forbidden velocities are difficult to understand in an
axisymmetric potential, but they can be understood in a rotating barred poten-
tial.

The disk maser stars beyond longitudes |l| > 15◦ are probably moving on loop
orbits. Outside of the bar region the potential must be close to axisymmetry as
observed in the terminal velocities of the gas.

For stars within longitudes |l| < 15◦, their forbidden velocities can be explained
by X1/X2 orbits.
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Figure 6.4: Left panel: (x, y) plot of an example of closed orbits calculated in a rotating
logarithmic potential (see text). Right panel: the same orbits projected in a (l−v) diagram
assuming φ = 45◦.

The most realistic potential currently available is that obtained by the Basel
group (Bissantz et al. 2003; Englmaier & Gerhard 1999). This is based on a mass
model of the Milky Way derived from the dust corrected COBE maps. We plan
to use the Basel potential to calculate a library of orbits and to fit these orbits to
the available kinematics of maser stars. The fit can be done by maximising the
likelihood of the line-of-sight velocity distribution at the (discrete) observations.
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